
Microsoft Edge: Chakra: incorrect JIT 
optimization with TypedArray setter 
CVE-2017-8548 + something more?

Minkyo Seo

1



Index
v 
��42�8�70

v �-�������	��	

v �4�72���������1�

v � �58��

2



About me
v ����A� ��

v .������4��������

v 
�	� A���0 	�����

v ��. ��.�

v �@�.��.�4�.���0��

v �/�0����.��.���

3

mailto:0xsaika@gmail.com


CVE-2017-8548
v Microsoft Edge: Chakra: incorrect JIT optimization with TypedArray setter #2

– https://bugs.chromium.org/p/project-zero/issues/detail?id=1290

4

https://bugs.chromium.org/p/project-zero/issues/detail?id=1290


JIT Compile
v Compiler

– Translating code before run (we called it compile)
– Compiling time L

– but FAST when it once compiled

v Interpreter
– Translating code on-the-fly
– Skip whole compile steps J
– Slow : Interpreter must translate every single line even they are same with past 

(e.g. looping, call same function in different place)

5



JIT Compile
v Compile Just In Time while interpreting!
v Add Monitor Thread to profile Javascript Engine

– Observe code run

– Profile each line of code how many time run, what types are use
– State : Warm / Hot

6



JIT Compile
v If codes getting warm, send it to JIT Compiler
v And compiled codes index by line number, types
v When interpreter try to execute same with line number, types, JIT Server pull out c

ompiled version

7

function test(a, b){
return a, b;

}
for (let i = 0; i < 0x1000; i++){

test('a', i);
} 



JIT Optimization
v JIT compiler do optimization with some assumption (fastpath)
v Many different case by JS engines and implementation
v Example

– if function keep using same type, remove type check

– if same code keep return true in some condition, pass all steps and return true

8



JIT Optimization
v If assumption wrong for some reason, JIT Server remove that compiled code : this 

logic called bailout
v But what if assumption was wrong and missed bailout logic? 
v Boom!

9

function test(a, b){
return a, b;

}
for (let i = 0; i < 0x1000; i++){

test('a', i);
} 
test(0, 0);



CVE-2017-8548
v Microsoft Edge: Chakra: incorrect JIT optimization with TypedArray setter #2

– https://bugs.chromium.org/p/project-zero/issues/detail?id=1290

10

https://bugs.chromium.org/p/project-zero/issues/detail?id=1290


CVE-2017-8548
v CVE-2017-0071

– Assume NativeFloatArray as VarArray
– change type with ValueOf helper call while assign process

– patched to bailout when use ValueOf
– But in result, Type confusion occur again!

11



CVE-2017-8548
v missed bailout logic while handling boundary check

12

3. b[0] is out-of-scope

1. define typedarray with length 0

2. make a[0] to var array



CVE-2017-8548
v https://github.com/Microsoft/ChakraCore/pull/3166/commits/cd60f3b5c35592006c

aae7730760a7980857990c

13

https://github.com/Microsoft/ChakraCore/pull/3166/commits/cd60f3b5c35592006caae7730760a7980857990c


CVE-2017-8548
v In result...

– Good News : we can control(read, write) buffer pointer J
– Bad News : triggered with NativeFloatArray L

14



CVE-2017-8548
v Bad News : triggered with NativeFloatArray

– convert leaked value from float to int?
– trigger with NativeIntArray?

– handle with bignumber.js lib?

15



CVE-2017-8548
v Trigger with NativeIntArray? = won’t work

– I think it should work... (no dependency on array types)
– Found solution later.. (cai@theori’s CVE-2017-0071 exploit)

16



CVE-2017-8548
v convert leaked value from float to int?

– it work J

17



CVE-2017-8548
v PROBLEM SOLVED J

18



CVE-2017-8548
v successfully get partial r/w primitive

19



from partial to full
v there are pretty cool object like DataView!

20



from partial to full
v DataView object methods

21



from partial to full
v But, How to abuse DataView object?

– can’t use DataView Object directly = we can’t control dataview’s buf pointer
– can’t call fake DataView object directly

§ we don’t have chakra.dll base yet = we don’t know vftable of dataview

22



from partial to full
v Solution :

23



from partial to full
v Solution :

24



from partial to full
v helper function

25

Real dataview

Fake dataview addressTarget address



from partial to full
v get arbitrary read/write primitive of full memory

26



exploit
v we have full ar/aw, not hijacked control flow yet.

– can’t do overwrite vtable and call object : Control Flow Guard

27



bypass CFG
v Goal : RIP control
v CFG bypass Idea : 

– JIT page
§ JIT Hardening : isolated JIT process.

– Control return address in stack
– Indirect call with no CFG check

28



bypass CFG
v but how can we find stack address? 

– use Features 
§ chakra!ThreadContext::globalListLast
§ chakra!InterpreterStackFrame::InterpreterThunk

§ interpreterFrame->addressOfReturnAddress

– read stack address in useful structure 
– calculate stack base and limit 

– find known retn address in stack range 
– retn overwrite 
– PROFIT!

29



bypass CFG

30



bypass CFG

31

v RIP Control!



bypass CFG

32

v do ROP with AppContainer IL L (Currently doesn’t work : ACG)
– leak shellcode array addr
– virtualprotect and give execute power 

– jmp to shellcode 
– PWNED!



Demo

33

v something more? 
– address bar spoofing


